Paul C's Blog

To be funny,to grow up!

0%

动态卷积在小样本学习中的使用

Y. Chai, L. Du, J. Qiu, L. Yin and Z. Tian, “Dynamic Prototype Network Based on Sample Adaptation for Few-Shot Malware Detection,” in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 4754-4766, 1 May 2023, doi: 10.1109/TKDE.2022.3142820.

Introduction

动态检测能够根据执行路径和行为获取更全面的信息,但是执行耗时,且可以被反沙箱手段躲避;静态速度快,但是依赖反汇编引擎,且很难从混淆和加壳的软件中提取正确的语义或有代表性的特征。

Filtered LargePE dataset.

参考文献中可读内容

TESSERACT: Eliminating experimental bias in malware classification across space and time

跨越时间和空间的恶意软件分类偏差消解